

Department of Homeland Security

SAND2015-3344R

ii

This page left blank intentionally

TRANSITION TO PRACTICE (TTP)

Test and Evaluation (T&E) Activity 2

Functional Testing Results

CodeDNA
VERSION 2.0

U.S. Department of Homeland Security (DHS)

Science and Technology Directorate (S&T) Cyber Division
Document Number: CM/JHU_APL/CodeDNA/A2R/R2.0/2015/006

15 April 2015

Points of Contact:

DHS Sciences and Technologies Transition to Practice Program Manager

Mike Pozmantier

T&E Plan prepared by

Sandia National Laboratories

Steven Hurd

iv

United States Department of Homeland Security

Science and Technology Directorate

Transition to Practice Test and Evaluation Program

This document is owned by DHS S&T Cyber Division. Modifications to this document should be provided

to S&T for their concurrence and release. Distribution of this document must be approved by DHS S&T.

Technical Document Disclaimer

This document presents scientific and technical data resulting from testing and evaluation activities

performed within the Science & Technology (S&T) Cyber Division Transition to Practice program. Where

possible, TTP program testing is performed in accordance with industry best practices. When testing is

performed in support of federal acquisition programs, test criteria are derived from systems

requirements for the acquisition program. In other cases, test criteria are based on technical expertise

and the U.S. Government’s current and anticipated future needs. The focus of this test activity seeks to

address Homeland Security Enterprise cyber and Industrial Control Systems Security requirements.

System performance results presented herein reflect the best efforts of the technical staff, but they

neither guarantee nor endorse the suitability of the system for untested applications or other system

requirements. Entities seeking to use this report as source selection criteria in an acquisition,

Cooperative Research and Development Agreement (CRADA), or other acquisition must evaluate this

report against their specific business requirements.

This report does not constitute a federal endorsement of any tested system, but is a source of unbiased

evaluation information for use by TTP technology stakeholders to promote the transition of cyber

security technologies to commercialization. Use of this report in whole or in part for commercial vendor

advertising and marketing materials is strictly forbidden, and no permission for such use will be granted.

 1

TABLE OF CONTENTS

 Executive Summary .. 2 1.

 Purpose .. 3 2.

 Test Criteria .. 3 3.

 Technology Version ...3 3.1

 Test Hardware...3 3.2

 Test Sets ...3 3.3

3.3.1 Test Set Notes ... 3

 Metrics ...5 3.4

 Truth Tables ..6 3.5

 Discussion on Positive & Negative and Relationship ...7 3.6

 Test and Evaluation Results .. 9 4.

 A note on using CodeDNA as a binary classifier .. 11 4.1

 Recreating Results ... 11 4.2

 Test F1 - Measure precision, recall, purity, and population margin for Test Set A 12 4.3

 Test F2 - Measure precision, recall, purity and population margin for test set A sources 4.4

compiled using two different compilers. ... 16

 Test F3 - Measure precision, recall, purity and population margin for test set A sources 4.5

compiled using two different compilers with varying optimization levels. 17

 Test F4 - Measure precision, recall, purity and population margin for test set B. 18 4.6

 Test F5 - Measure precision, recall, purity and population margin for test set C. 22 4.7

 Test F5 Subset – Measure precision, recall, purity and population margin for a subset of Test 4.8

Set C. 23

 Test F6 - Measure precision, recall, purity and population margin for test set D. 24 4.9

 Usability and Testing Notes ... 25 4.10

 Conclusion, Recommendation and Future Work ... 28 4.11

 References ... 28 5.

 Appendix .. 29 6.

 Results Spreadsheet .. 29 6.1

 2

 Executive Summary 1.

The purpose of this evaluation is to assess the claim made by the technology provider that CodeDNA

provides a “reliable, fully automated, fast means for identifying related malware files and linking

variants.” CodeDNA, unlike most malware variant detectors, is not based on signatures or hashes; it

uses instead a lossy compression to transform binaries into a fingerprint that is a string over a small

alphabet, and measures the relationship between fingerprints of binaries, returning a relationship score

on a scale of 0.0 to 1.00.

The test team tested CodeDNA using four different data sets to assess its ability to recognize variants of

PE format software binaries, including benign code and malware, and to group variants into families.

The results show that CodeDNA reports related variants with a relatively high level of precision and

recall demonstrating CodeDNA’s ability to report relevant matches between malware variants. The

strongest results were observed using malware samples collected from the wild.

CodeDNA also supports binning the results by relationship scores so that both precision and recall can

be adjusted for specific scenarios, to narrow the results (increase the precision) or to broaden the

results (increasing the recall). CodeDNA showed itself to be extremely useful in identifying related

samples. Thus, adding CodeDNA to an existing suite of tools in an analyst’s workflow can allow them to

better prioritize and potentially reduce workload, and much more quickly understand relationships and

code changes in newly arrived malware.

As is typically the case with newly developed tools, the CodeDNA version tested exhibited some

deficiencies, most notably in the user interface that needs to be expanded and improved1, and the user

documentation that needs to be expanded. However, during 6 months of testing, the test team noted

no stability issues in using CodeDNA. Not once did CodeDNA fail to run, nor did the machine hosting

CodeDNA crash as a result of CodeDNA. This speaks to the maturity of the software, and to support the

statement that CodeDNA is ready for pilot test deployment.

1
 See Technology provider’s notes in section 4.10

 3

 Purpose 2.

The purpose of this evaluation is to assess the claim made by the technology provider that CodeDNA

provides a “reliable, fully automated, fast means for identifying related malware files and linking

variants.” In order to assess this claim the testing team has selected and conducted functional (efficacy

and effectiveness) tests based on the use cases anticipated for CodeDNA. One possible use case for

CodeDNA is to separate benign binaries from malware when conducting an incident response, or to

group similar files based on a threshold. This would reduce the amount of duplicated effort needed by

the incident responders. Another possible use case is to use the fingerprint generated by CodeDNA to

identify connections between files within families of malware, linking contextual history and behavior

information from other sources for malware analysts. In this way CodeDNA can be used in both

practitioner and research settings.

 Test Criteria 3.

 Technology Version 3.1
CodeDNA version 1.1 was used for all tests, unless otherwise stated. Note: Some results were obtained

using version 1.2, which adds inclusion scoring, a new scoring method that is described and shown in a

few examples below.

 Test Hardware 3.2
CodeDNA version 1.1 was tested on both a laptop and a desktop. The specifications are provided below.

Laptop:
Dell Latitude e6430
Intel Core i7 @ 2.8Ghz
16GB of DDR3 1600 ram

Desktop:

Dell Optiplex 9800 with a
2.9Ghz Intel Core i7 @ 2.9Ghz
32GB of DDR3 1600 ram

 Test Sets 3.3
For the purposes of this evaluation, subsets and complete sets of test binaries were utilized from three

malware repositories. The test sets will be described in detail in this section, and in greater detail in the

individual results sections for each of the test sets.

3.3.1 Test Set Notes

The Cleanroom Malware Test Set was comprised of 74 binaries after malware with unstated lineage

was removed. Additionally, 1000 binaries were used for both the known malware and benignware in

the Labeled Malware and Mixed Test Sets (Test Set C and D).

 4

The following table provides information about the test sets (Tests F1 through F6 are defined below):

Type Description Quantity Truth
Test

Used In

Well-
Characterized

(Test Set A)

PE files compiled from
open source software
repositories. Several
versions from each
repository will be used.

5 applications
each with 4
versions for a
total of 20
binaries
(benignware).

Full knowledge
of the stated
origin and of the
source code is
available.
Functionality is
well understood.

F1, F2, F3

Cleanroom
Malware

(Test Set B)

Malware developed de
novo by MIT Lincoln
Laboratory (MITLL) for
the DARPA Cyber
Genome project

74 malware
binaries.

Ground truth of
source, design,
and functional
capabilities are
available. (truth
tables are
discussed
further below)

F4

Labeled
Malware

(Test Set C)

Malware labeled by
automated malware
analysis system

1000 malware
binaries.

Labels generated
from dynamic
and static
analysis

F5

Labeled
Mixed

(Test Set D)

Malware labeled by
automated malware
analysis system and
benignware

1000 malware
binaries and
1000
benignware
binaries
Total: 2000
binaries

Labels generated
from dynamic
and static
analysis

F6

Software versions of the applications in the Well-Characterized Test Set were carefully identified in

order to avoid testing against versions that do not share a majority of the code base, or are too similar in

comparison to functionality found in other samples. In order to fulfill this goal, C and C++ source code

written for Windows was selected from open source repositories that contained minor bug fixes and

functional updates between versions. As CodeDNA only analyzes the executable portions of binaries, the

binaries selected were identified as having only one main executable section while also being

dynamically linked. This was to help reduce possible issues that might occur from large matching or non-

matching non-executable sections. Non-executable sections can create an additional level of confusion if

there are embedded text or image files used as indicators.

Additionally, a small subset of samples was taken from the Labeled Malware Test Set/Test Set C. This

subset was created using behavioral analysis drawn from a consensus of antivirus products from a

 5

subset in which the behavior of the malware was considered well known. This was deemed the best way

to ensure full understanding of a small set of ‘wild’ malware, thereby reducing unknowns in the test set,

and to increase the perceived reliability in the truth table generated for this test. Further work was done

to ensure similarity in the viewable assembly.

 Metrics 3.4
The test criteria used were designed to test the stability and accuracy of the scoring provided by

CodeDNA. Stability measures whether CodeDNA returns the same results in multiple runs.

Accuracy seeks to measure how well CodeDNA characterizes a set of samples. The following metrics to

evaluate the accuracy of scoring were used:

 Precision – Fraction of the similarity relationships that are relevant [3], calculated by the following

formula:
𝑇𝑃

𝑇𝑃+𝐹𝑃

 Recall – Fraction of relevant relationships that are retrieved [3], calculated by the following

formula:
𝑇𝑃

𝑇𝑃+𝐹𝑁

 Purity – Percentage of the most frequently occurring dominant label within a connected

component. The dominant label is typically drawn from the ground truth if available. A mean

score will be computed across all connected components.

 Population Margin - Measure of the difference between the percentage of the most frequently

occurring dominant label and the percentage of the second most frequently occurring label within

a connected component. A mean score will be computed across all connected components.

The first two metrics (precision and recall) were calculated using truth tables related to similarity

matching and the following definitions:

 True Positive (TP) – Similarity match detected by the analysis that exists in the truth table

 False Positive (FP) – Similarity match detected by the analysis that does not exist in the truth table

 False Negative (FN) – Similarity match missed by the analysis that exists in the truth table

Precision and recall are widely used in analyses of searching technologies, but adapting the binary

classification of precision and recall to the measure of the degree of relationship provided by CodeDNA

required a more nuanced approach. Two factors are important: the relationship score is a range of 0.0 –

1.0 rather than a binary answer, and the minimum score threshold of returned results is set by users.

Typically, users will set the threshold at different values depending on what information they are trying

to gather. For this reason, precision and recall were tested at varying score thresholds: 0.01, 0.2, 0.3,

0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. It is expected that lower thresholds will return more false matches, and

that will affect the accuracy metrics. A higher threshold is more useful in returning relationships with a

high degree of confidence, whereas a lower threshold is more useful when trying to find all possible

relationships resulting in a higher degree of recall. Reporting precision and recall for a range of

thresholds provides a better understanding of how CodeDNA performs across a range of use scenarios.

 6

Purity and population margin were computed based on truth tables created for each of the test sets.

These metrics are used in testing the effectiveness of clustering algorithms. Purity and population

margin tend to have better scores when groups or clusters are smaller and more homogenous. This is

apparent in the results. As the threshold is lowered to include more samples, recall increases and

precision decreases. The groups become larger and less homogenous. As a result, purity and population

margin scores decline. These results are still included to serve as an additional indicator of correctness in

testing, but are not discussed further as the results, as expected, track well with precision and recall and

thus do not add information.

In cases where results diverged, additional analysis was conducted as to the reasons for disagreements

between the truth sets and the similarity matching score given by CodeDNA. True Positive, False

Positive, and False Negative metrics are included in the test script and were also used to help validate

the results.

 Truth Tables 3.5
Truth tables were generated using what was known about the binaries being tested. Malware, typically

classified by its behavior, is named by the first anti-virus provider to publish. The naming may or may not

be followed by other anti-virus providers, which makes generating truth tables based on names alone a

very dubious and frustrating exercise. Additional indicators, such as the address or method that a

malware sample “calls home” to, are used to help identify malware samples with greater accuracy. As

little is usually known about the malware authors or operators, this method is treated as the current

best practice. The lack of knowledge and varying identification tools and naming schemas make it

difficult, if not impossible, to create indisputable ground truth for a set of malware samples for testing a

new technology that automates reporting of similarities in the code in two different binaries

In order to address this, the truth table for the Well-Characterized Set (Test Set A) used in the first three

tests was created from open source binaries where a great level of detail was known. The source code

was small enough to be read and understood, the authors were known, the behavior is known, and the

authors provided comments for changes between versions. The behavior between the programs was

also understood to vary between samples, but only slightly between versions. Given this information, a

test set was created in which source code, assembly, and meta-data were all readily available. These

samples were used for test F1 through F3.

Additionally, de novo open source malware written specifically for this kind of testing was made

available from the MIT Lincoln Laboratory Cyber Genome project, and was used to create the test

binaries in the fourth test (F4). This is the set in Test Set B, the Cleanroom Malware set. De novo, a Latin

expression meaning “afresh” or “from the beginning”, was the term used by the Cyber Genome team to

show that they had full control in writing the test malware. This test data, the Cleanroom Malware test

set, came with a provided truth table. While there are possible issues with this test set, namely a

difference between lineage and relationship, this test set was accepted as having known truth as the

authors provided detailed comments between versions, diagrams of the intended lineage, and the

 7

source code was made available. Further discussion about the differences between the lineage truth

tables and relationship truth tables is below.

Truth tables for test set five and six (F5 and F6), the Labeled Malware test set (Test Set C) and Labeled

Mixed test set (Test Set D), were drawn from a malware set referred to as the Mannheim set. This test

set was generated and grouped by results of behavioral analysis. The Labeled Mixed test set included an

additional set of 1,000 benign Windows XP binaries. In this case, the truth tables closely reflected the

believed relationships based on behavioral analysis.

 Discussion on Positive & Negative and Relationship 3.6
The approach that CodeDNA takes is novel, and while there are tools with similar goals of identifying

related malware, the test team is aware of no tools that use the same method for drawing those

relationships.

Test cases for tools meant to identify related malware have multiple issues. The test samples are either

drawn from the wild, where there is little known but a lot believed about their familial relationships, or

from samples written in the lab where there is much known yet little diversity. This creates a problem in

there being either quality samples with little known about them, or much known about samples, but an

issue with those samples being ‘inbred’ and of little diversity. In any case, in order to test CodeDNA,

attempts were made using both types of samples with varying levels of success in testing.

As such, explaining ‘true positive’, ‘false positive’, ‘true negative’ and ‘false negative’ is very important.

‘Agreement’ is the important distinction to be made here. A ‘true positive’ is when CodeDNA identifies a

relationship which is in agreement with the truth table (Figure 1).

Figure 1 : Test Outcome Explanation

One case noted in these samples is when relationships between malware are loosely defined. This was

illustrated in a briefing provided by the technology developer after looking closely at the results from

Test Set B, the Cleanroom Malware test set. In this case, CodeDNA identified relationships that the

Cleanroom Malware truth table did not identify. Further complicating this is that at varying threshold

levels, CodeDNA creates complete pairwise comparisons reporting the percentage of common code

between ALL samples above a user-defined score threshold whereas a truth table is binary in nature,

reporting a relationship whose score threshold is not defined and not knowable.

 8

In addition, in some of the test sets, the idea of lineage versus relationship is introduced. Lineage is a

subset of relationship. It can be highlighted in the case of malware where functionality has been added

in series to new versions of malware.

Figure 2: Lineage Graph

Figure2 is an example of lineage, where a single author has added additional functionality for each new

variant. Hypothetically, the assembly changes in set increments, where the differences only increase

fractionally. The similarity score between sample 1 and 2 then is ½ or 0.5. As generations are added, the

similarity score between generations, given the same quantity of added code for each generation,

becomes relatively small. For example, between samples 3 and 4 the score would be 0.75 for ¾. But,

when comparing across multiple generations, the similarity scores decrease, such that the final similarity

between 1 and 4 is ¼, or 0.25. In the truth table, there would be a relationship where similarity is only

0.25, but there is a known and believed relationship.

The CodeDNA team recognized this issue, and have made strides towards identifying identical sections

in code using ‘inclusion scores’, available in an updated version of the software. The usage of section

scores helps CodeDNA to not only identify similarity scores, but also lineage scores. The Viz tool has

demonstrated the capability to highlight and identify this subset of a relationship, and is further shown

in the results sections for Test F4.

 9

 Test and Evaluation Results 4.

The following figure, Figure 3, is a high-level summary view of the results. The general trend, as was

expected, is that as the threshold value decreases precision decreases, while the amount of recall

increases. Another way to view this relationship is that as the threshold for what constitutes a similarity

relationship is lowered, CodeDNA identifies more related samples, but has a lower confidence that

those samples are related. The technology developers anticipate that users will define the scoring

threshold differently for different scenarios. A high-speed perimeter defense needs higher precision for

automated disposition, and a lower threshold for flagging incoming binaries for decision on the basis of

additional metadata, or for referral for more detailed analysis.

 10

Figure 3: Overall Results Table

Results	File Truth	File Precision Recall Purity Pop.	Margin Thresh.

'F1_1.csv' 	'F1_ground_truth.csv' 0.157895 1.000000 0.200000 0.000000 0.01

'F1_20.csv' 	'F1_ground_truth.csv' 0.238095 1.000000 0.625000 0.500000 0.20

'F1_30.csv' 	'F1_ground_truth.csv' 0.384615 1.000000 0.777778 0.666667 0.30

'F1_40.csv' 	'F1_ground_truth.csv' 0.384615 1.000000 0.777778 0.666667 0.40

'F1_50.csv' 	'F1_ground_truth.csv' 0.483871 1.000000 0.777778 0.666667 0.50

'F1_60.csv' 	'F1_ground_truth.csv' 0.684211 0.866667 0.850000 0.750000 0.60

'F1_70.csv' 	'F1_ground_truth.csv' 1.000000 0.833333 1.000000 1.000000 0.70

'F1_80.csv' 	'F1_ground_truth.csv' 1.000000 0.700000 1.000000 1.000000 0.80

'F1_90.csv' 	'F1_ground_truth.csv' 1.000000 0.566667 1.000000 1.000000 0.90

'F2_1.csv' 	'F2_ground_truth.csv' 0.225446 0.759398 0.614286 0.500000 0.01

'F2_20.csv' 	'F2_ground_truth.csv' 0.277108 0.518797 0.675439 0.539474 0.20

'F2_30.csv' 	'F2_ground_truth.csv' 0.365079 0.518797 0.760000 0.640000 0.30

'F2_40.csv' 	'F2_ground_truth.csv' 0.365079 0.518797 0.760000 0.640000 0.40

'F2_50.csv' 	'F2_ground_truth.csv' 0.552000 0.518797 0.827778 0.700000 0.50

'F2_60.csv' 	'F2_ground_truth.csv' 0.640449 0.428571 0.837662 0.714286 0.60

'F2_70.csv' 	'F2_ground_truth.csv' 0.777778 0.421053 0.944444 0.888889 0.70

'F2_80.csv' 	'F2_ground_truth.csv' 0.764706 0.390977 0.954545 0.909091 0.80

'F2_90.csv' 	'F2_ground_truth.csv' 1.000000 0.345865 1.000000 1.000000 0.90

'F3_1.csv' 	'F3_ground_truth.csv' 0.250188 0.764097 0.631579 0.526316 0.01

'F3_20.csv' 	'F3_ground_truth.csv' 0.318182 0.579977 0.691392 0.554945 0.20

'F3_30.csv' 	'F3_ground_truth.csv' 0.405145 0.579977 0.771041 0.650679 0.30

'F3_40.csv' 	'F3_ground_truth.csv' 0.405145 0.579977 0.771041 0.650679 0.40

'F3_50.csv' 	'F3_ground_truth.csv' 0.570136 0.579977 0.837691 0.714597 0.50

'F3_60.csv' 	'F3_ground_truth.csv' 0.653313 0.487917 0.848596 0.741148 0.60

'F3_70.csv' 	'F3_ground_truth.csv' 0.807322 0.482163 0.950617 0.901235 0.70

'F3_80.csv' 	'F3_ground_truth.csv' 0.799599 0.459148 0.959596 0.919192 0.80

'F3_90.csv' 	'F3_ground_truth.csv' 1.000000 0.413119 1.000000 1.000000 0.90

'F4_1.csv' 	'F4_ground_truth.csv' 0.117389 0.548975 0.961648 0.954545 0.01 0.01

'F4_20.csv' 	'F4_ground_truth.csv' 0.101190 0.464692 0.972782 0.967742 0.20 0.20

'F4_30.csv' 	'F4_ground_truth.csv' 0.101190 0.464692 0.972782 0.967742 0.30 0.30

'F4_40.csv' 	'F4_ground_truth.csv' 0.105946 0.446469 0.972782 0.967742 0.40 0.40

'F4_50.csv' 	'F4_ground_truth.csv' 0.109114 0.387244 0.972782 0.967742 0.50 0.50

'F4_60.csv' 	'F4_ground_truth.csv' 0.126214 0.355353 0.942739 0.918300 0.60 0.70

'F4_70.csv' 	'F4_ground_truth.csv' 0.154895 0.284738 0.942739 0.918300 0.70 0.80

'F4_80.csv' 	'F4_ground_truth.csv' 0.185771 0.214123 0.906544 0.840372 0.80 0.90

'F4_90.csv' 	'F4_ground_truth.csv' 0.374101 0.118451 0.936144 0.893121 0.90 1.00

'F5_sub_1.csv' 	'F5_sub_ground_truth.csv' 0.200704 1.140000 0.604167 0.500000 0.01

'F5_sub_20.csv' 	'F5_sub_ground_truth.csv' 0.552632 0.840000 0.902778 0.833333 0.20

'F5_sub_30.csv' 	'F5_sub_ground_truth.csv' 0.891304 0.820000 0.979167 0.958333 0.30

'F5_sub_40.csv' 	'F5_sub_ground_truth.csv' 1.000000 0.820000 1.000000 1.000000 0.40

'F5_sub_50.csv' 	'F5_sub_ground_truth.csv' 1.000000 0.820000 1.000000 1.000000 0.50

'F5_sub_60.csv' 	'F5_sub_ground_truth.csv' 1.000000 0.820000 1.000000 1.000000 0.60

'F5_sub_70.csv' 	'F5_sub_ground_truth.csv' 1.000000 0.820000 1.000000 1.000000 0.70

'F5_sub_80.csv' 	'F5_sub_ground_truth.csv' 1.000000 0.820000 1.000000 1.000000 0.80

'F5_sub_90.csv' 	'F5_sub_ground_truth.csv' 1.000000 0.780000 1.000000 1.000000 0.90

'F5_1.csv' 	'F5_ground_truth.csv' 0.188347 0.488992 0.997782 0.997168 0.01

'F5_20.csv' 	'F5_ground_truth.csv' 0.537820 0.481909 0.998029 0.997390 0.20

'F5_30.csv' 	'F5_ground_truth.csv' 0.714576 0.480848 0.998161 0.997515 0.30

'F5_40.csv' 	'F5_ground_truth.csv' 0.722272 0.480430 0.997954 0.996375 0.40

'F5_50.csv' 	'F5_ground_truth.csv' 0.745770 0.479515 0.997130 0.994260 0.50

'F5_60.csv' 	'F5_ground_truth.csv' 0.749120 0.478283 0.997608 0.995217 0.60

'F5_70.csv' 	'F5_ground_truth.csv' 0.749619 0.478001 0.997710 0.995419 0.70

'F5_80.csv' 	'F5_ground_truth.csv' 0.750377 0.477256 0.997993 0.995986 0.80

'F5_90.csv' 	'F5_ground_truth.csv' 0.877329 0.462266 0.998787 0.997573 0.90

'F6_1.csv' 	'F6_ground_truth.csv' 0.171280 0.203438 0.999263 0.999094 0.01

'F6_20.csv' 	'F6_ground_truth.csv' 0.388323 0.063320 0.991601 0.991498 0.20

'F6_30.csv' 	'F6_ground_truth.csv' 0.500244 0.060980 0.994851 0.994743 0.30

'F6_40.csv' 	'F6_ground_truth.csv' 0.508791 0.060677 0.995573 0.995041 0.40

'F6_50.csv' 	'F6_ground_truth.csv' 0.522335 0.060332 0.995997 0.994867 0.50

'F6_60.csv' 	'F6_ground_truth.csv' 0.523850 0.060062 0.995572 0.994409 0.60

'F6_70.csv' 	'F6_ground_truth.csv' 0.524050 0.059975 0.994726 0.993576 0.70

'F6_80.csv' 	'F6_ground_truth.csv' 0.524430 0.059851 0.994453 0.993133 0.80

'F6_90.csv' 	'F6_ground_truth.csv' 0.602087 0.057115 0.994641 0.993516 0.90

0.000000	

0.200000	

0.400000	

0.600000	

0.800000	

1.000000	

1	 20	 30	 40	 50	 60	 70	 80	 90	

Precision	

Recall	

0.000000	

0.200000	

0.400000	

0.600000	

0.800000	

1.000000	

1	 20	 30	 40	 50	 60	 70	 80	 90	

Precision	

Recall	

0.000000	

0.200000	

0.400000	

0.600000	

0.800000	

1.000000	

1	 20	 30	 40	 50	 60	 70	 80	 90	

Precision	

Recall	

0.000000	

0.200000	

0.400000	

0.600000	

0.800000	

1.000000	

1	 20	 30	 40	 50	 60	 70	 80	 90	

Precision	

Recall	

0.000000	

0.200000	

0.400000	

0.600000	

0.800000	

1.000000	

1	 20	 30	 40	 50	 60	 70	 80	 90	

Precision	

Recall	

0.000000	

0.200000	

0.400000	

0.600000	

0.800000	

1.000000	

1	 20	 30	 40	 50	 60	 70	 80	 90	

Precision	

Recall	

0.000000	

0.200000	

0.400000	

0.600000	

0.800000	

1.000000	

1	 20	 30	 40	 50	 60	 70	 80	 90	

Precision	

Recall	

 11

 A note on using CodeDNA as a binary classifier 4.1
CodeDNA is not solely a binary classifier as it provides a similarity score on a scale of 0.0 to 1.0.

Additionally, this score is provided for individual sections of a binary. In order to test CodeDNA, it was

considered important to look at precision and recall as a function of some parameter, in this case a

similarity score given varying lower bound thresholds for reporting results. Receiver operating

characteristic curves (ROC curves) are provided at the beginning of each results section, graphically

depicting precision and recall varying over threshold. This report provides information as to how

CodeDNA performs in regards to the previously stated test criteria. Note: The maximum similarity score

was used for binaries where there were matches on more than one section.

 Recreating Results 4.2
The tests conducted were designed to be repeatable for later auditing and correction of any testing

errors discovered. There are several scripts written in order to make this easier.

auto_results_analysis.py is used to run all tests on all of the results files and ground truth files used for

this round of testing, as this can be error-prone over large test cases. The files have been stored in

subfolders for each of the individual tests. The output from auto_results_analysis.py is simultaneously

displayed to the screen, as well as recorded to an output file which is hard coded inside the script.

Example use: python auto_results_analysis.py

Note: Almost all of the output files required a level of reformatting in order to make the outputs

comparable. This was not done to reduce or alter the information provided by CodeDNA in any way, but

instead was used for pre-parsing the information for easier data analysis.

 12

 Test F1 - Measure precision, recall, purity, and population margin for Test Set A 4.3
Procedure: Using binaries generated from the Well Characterized (Test Set A), CodeDNA was used to

identify relationships between binaries. The analysis was conducted using the default settings

recommended in the CodeDNA user documentation, with deviations made to vary the threshold value in

order to gauge performance at varying levels. The reasons for this variance are given in section 3.3.

Precision and recall were calculated from the similarity scores contained in the CSV output from the

scoring phase. The scores provided for purity and population margin were calculated via the generated

CSV file.

This test set, Test F1 using Test Set A, consisted of 5 applications each having 4 varying versions. The

applications were bgrep, measure, prime, timer, and winutils. bgrep is a grep utility written for Windows

which includes the ability to search for binary strings. measure is a implementation of parallel-radix sort.

prime is a utility written to generate prime numbers. timer is a C module which implements a simple

timer using gettimeofday. winutils is an implementation of utilities written to be executed from the

windows command window. The binaries tested were selected because they closely fit the criteria

selected for testing: they are small enough that the functionality and behavior could be understood, the

variances between binaries were limited to bug fixes or small functional updates, and the files were

completely composed of executable code. For this iteration the test sets were all compiled with a single

compiler with the default optimization flags used.

Results:

Figure 4: F1 Results

The results from CodeDNA are strong, especially at the high threshold level. The interplay between
precision and recall numbers in this case is interesting. In cases where an analyst is looking for a high
level of surety in the relationship between files, a higher threshold level would lead to greater
confidence in an indicator. In cases where an investigator is more comfortable with lower reliability, but
wants to analyze more possible relationships, a lower threshold would yield more possible relationships.

Results Analysis:

F1 is a good place to start with analysis, as it is a smaller set that helps to highlight some of the

0.000000

0.200000

0.400000

0.600000

0.800000

1.000000

1 20 30 40 50 60 70 80 90

Precision

Recall

 13

interesting facets in the results. CodeDNA, when fingerprinting PE format binaries, looks at assembly
code, and through a specific vocabulary, is able to create a fingerprint based on what is found.
Comparisons between files using CodeDNA’s visualization tool, CodeViz, are shown below. What follows
are two cases where CodeDNA differs from the truth table that is based on knowledge of the
functionality, source code, and history.

As one example, consider the case of timer2o and timer3o. These are binaries for the second and third
version of timer compiled with no optimizations. Drill down visualization results shown in Figure 5 are
at a high level; the “zoom lever” provided in drill down lets the user drill down to the detailed content of
the file section and review the exact nature of the matching parts and the non-matching parts; the
analysis below included detailed examination of the matching and non-matching code.

Figure 5: timer2o vs. timer3o drilldown

In this case the similarity score provided by CodeDNA is given at 0.55. With a threshold above 0.55, this
score would be interpreted as a false negative. (i.e., 45% of the code is different, 55% is in common).
The green areas on the graph show matching areas, and the yellow and gray area show where assembly
exists in one binary that does not in the other. The address space in the binary on the left is linearly
increasing; the address space in the binary on the right is re-arranged as needed for matching.

The disassembly tool objdump is also useful for verifying the comparison in this case, as the main
functions do in fact differ a great deal. Specifically, there is a large amount of code (45%) that exists in

 14

one of the binaries and not in the other. In this case, from CodeDNA’s measurement of common code,
CodeDNA is correct, even though the findings disagree with the known lineage based on authorship,
functionality, and sourcing.

timer3o and winutils3o, on the other hand, results in a score of 0.63. In this case CodeDNA’s result is a
false positive, when compared to knowledge about authorship, functionality, and sourcing. Again,
looking at the code drill down in CodeDNA is informative. There is a large section of assembly that exists
in one binary but not in the other.

Figure 6: timer3o vs. winutils3o drilldown

The test team discussed both of these cases with the CodeDNA team. According to the level of assembly
code provided in these cases CodeDNA is correctly analyzing the samples. This creates a larger question:
Given that there is a large amount of information known about these programs, including the behavior,
the authors, the changes between variants, and access to the source code, is it possible that CodeDNA is
making a better decision? In this case, given the large amount of information known about the test
samples, CodeDNA is not. The scores, however, are close enough to the recommended threshold in this
case in that it would be worthwhile to an analyst to conduct further analysis to verify the relationship.

In both these instances it is important to realize that these are extremely short programs. To illustrate
this, consider two short programs that are different because one program opens a file and the other
prints something to the console. These programs do have different functionality, but a lot of their

 15

binary code will be the same at least in part because of “boilerplate” added by the compiler. From the
point of view of understanding the functionality it is not correct to say that the programs are related;
from the point of view of how much machine code they have in common, it is correct to say that they
are related. Notice, however, that CodeDNA’s scores are in a range where it is clear that there is a
relationship between these two programs, but it is a weak relationship, and there is a significant
percentage of code that does not match.

In order to test this further the following test set includes the same binaries, but adds a second set of
binaries compiled from the same source code using a different compiler. Additionally, as CodeDNA is
already distinguishing between PE sections, the main program section (the binary section that contains
the execution starting address) of the PE may be given additional weight in developing a composite
score of all sections.

Figure 7: timer3o vs. winutils3o drilldown NEW VERSION

Figure 7 shows results of a newer version of CodeDNA that shows the addition of an inclusion score in

the lower left hand corner. This score, while not included in the version of CodeDNA provided to Sandia

for this round of testing, does help to illustrate improvements made in CodeDNA which both help to

 16

highlight the reason for the disagreement between CodeDNA and the generated truth tables, as well as

to show efforts made to address this disagreement and improve CodeDNA’s detection rate in other

cases. Notice also that both of these binaries are extremely small, an order of magnitude smaller than

most malware binaries; this results in very small fingerprints, and the potential for less confidence in the

results. The weak similarity score and a relatively high inclusion score make it clear that while these two

binaries do share a lot of code, one of them has added code that possibly has a different behavior.

 Test F2 - Measure precision, recall, purity and population margin for test set A sources 4.4

compiled using two different compilers.

Procedure: The same procedure as Test F1 was used but test set A was expanded to include binaries

from two different compilers.

Results:

Figure 8: F2 Results

Results analysis: In this case, CodeDNA results helped to confirm part of the issues with using smaller

binaries and source files. While this was necessary in order to fully understand the test set, it created a

situation where large portions of the binaries tested consisted of ‘boiler plate’, versus instructions

resulting from the source code. The decrease in precision and recall in this case is largely attributed to

doubling the number of samples by using a second compiler, and not increasing the size of the sample

binaries.

In any case, these results are consistent with expectations, given how CodeDNA analyzes sample files.

Despite the decrease in the otherwise very high scores, CodeDNA still appears to be a valuable tool in

incident investigation as part of an overall workflow.

Technology provider’s note: Because boilerplate code is a known and well-understood issue, the

technology developers anticipate options for handling it in a production analysis system. For example,

“boilerplate” sections could be tagged with individual fingerprints so that relationships can be evaluated

with the boilerplate masked, or the existence of certain classes of boilerplate could be useful in building

attribution across disparate pieces of software.

0.000000

0.200000

0.400000

0.600000

0.800000

1.000000

1 20 30 40 50 60 70 80 90

Precision

Recall

 17

 Test F3 - Measure precision, recall, purity and population margin for test set A sources 4.5

compiled using two different compilers with varying optimization levels.

Procedure: The same procedure as Test F1 was used but test set A was expanded to include binaries

from two different compilers, using multiple levels of compiler optimization. The optimization flags

used were default, -2, -3, -fast, and -small.

Results:

Figure 9: F3 Results

Results analysis: The results from the F3 test set seem to confirm the conclusion from the F2 test set

that a change in compiler was the main cause in the lower scores. As more binaries were created by

adding compiler optimizations the scores largely stayed the same. The belief in this case is that as the

binaries are optimized, the same instructions are used while the code sections are simply moved. This is

a case where CodeDNA excels. The results in this case indicate that different optimization flags would

not be useful in attempting to avoid detection of relationships by CodeDNA.

0.000000

0.200000

0.400000

0.600000

0.800000

1.000000

1 20 30 40 50 60 70 80 90

Precision

Recall

 18

 Test F4 - Measure precision, recall, purity and population margin for test set B. 4.6
Procedure: The same procedure as Test F1 was used but the test was run on the Cleanroom Malware

Set (Test Set B).

Results:

Figure 10: F4 Results

Test set F4 proved to be problematic as a test case. This was not due to any fault with CodeDNA, and the
reasons for the test set being problematic were not noted until after testing had completed.

The Cleanroom Malware Set was gathered using the Test Case Composition information provided in the
Cyber Genome documentation, largely drawn from the provided Ground Truth Graphs for each labeled
family. This set of malware was developed de novo by MIT Lincoln Laboratory (MITLL) for the DARPA
Cyber Genome Project. Only the cleanroom (notated with a CR) binaries were included from the original
test case composition. Further, the S7.MikeBobClusterF.CR.20 was excluded as it stated that there was
no lineage for that test set. 74 binaries with known “truth” remained to test.

The “truth” provided in this case was problematic in that CodeDNA generates a relationship graph, while
the Cleanroom Malware Set provided truth’s comprised of Lineage, Clustering, Purpose, Traits,
Component Clustering, and Component Lineage. Additionally, not all of these features were provided for
all of the families, yet the information was always displayed in a Ground Truth Graph or simple table.
This information did not distinguish which feature was being presented. The variance in the features
used to generate the Ground Truth Graphs caused a tremendous impact on CodeDNA’s precision and
recall scores, and should not be viewed negatively in regards to CodeDNA.

0.000000

0.200000

0.400000

0.600000

0.800000

1.000000

1 20 30 40 50 60 70 80 90

Precision

Recall

 19

The CodeDNA scores on the Cleanroom set were lower than anticipated, but after further analysis and
comparison with other tools, CodeDNA is shown to have performed admirably. While the numerical
scores were found to be accurate, analyzing the meaning of the similarity scores led to interesting
insights about the Cleanroom Malware Set. One theory as to why CodeDNA scores seem lower than
anticipated is that the Cleanroom test set experienced unforeseen relationships. For example, in the
Cyber Genome test set, most of the binaries were written by two authors. As the authors, Mike and Bob,
developed the test set, the binaries changed largely due to adding functionality. However, functionality
was never removed. In this way, the binaries weren’t so much related as they were generational. This
process led to an issue where most of the binaries were related by lineage.

If a sample were to be written and then copied you would expect a 100% match. If additional
functionality and code were to be added to create a second generation binary, you would expect that
comparison between it and the first generation binary would yield a lower percentage match, as the
second binary contains instructions not present in the first binary. If a third generation sample were
written, then there would be an even lower score between the first generation and the latest
generation. This is very likely the case in the Cyber Genome project. CodeDNA measures similarity
relationships, and the interpretation of the scores based on different score thresholds will not yield
truth tables that exclusively show lineage.

Another factor adds to the difficulty of accurately assessing this test set. In some cases the exact same
functionality was added across malware families. Also, as only two authors were used it seems likely
that the same coding style is seen by CodeDNA between the stated families. To address this and similar
issues, the CodeDNA team stated that they are now able to include an inclusion score, which should
help to shed some information as to generational parentage between samples (See Figure 7). If there is
a high inclusion score, it might be likely that there is a parental link between samples. This is an area
that would be very interesting for additional research; there are tantalizing possibilities for attributing
code to individual actors and for tracing relationships across code with very different functionality.

Figure 11 shows the screen capture from CodeDNA Viz of the graph created from the cleanroom
malware test set, and helps to show the strong relationship found between all samples provided by the
Cyber Genome project, and not just those stated to be familial.

 20

Figure 11: F4 CodeDNA VizTool

Figure 12: F4 CodeDNA Lineage Viz Tool

Figure 12 uses the CodeDNA Viz Tool, but instead arranges the samples from the

S1.MikeBobStraightLineC2AutoCR10 subset in hierarchy from the source. In this case, the parentage

between the malware samples is apparent. The way that that test set was written is clearly shown as

functionality increases between the samples. With the samples being generated largely by the same two

 21

authors and with the same functionality, the reason for the large cluster seems to be that this test set is

largely inbred.

As an additional means of validating the discrepancy with the Cyber Genome test set truth tables,

SSdeep was used in order to try and identify relationships. SSdeep is a popular fuzzy hashing program

used to gauge similarities between files. SSdeep only identified 4 matches from the entire set, none of

which were correct, leading to scores which measured near 0 for both precision and recall. This is not so

much a weakness of ssdeep as reinforcement of the finding that more work needs to be done to derive

lineage from relationships, and that there is interesting potential here for more detailed automation in

deriving attribution than is currently possible.

 22

 Test F5 - Measure precision, recall, purity and population margin for test set C. 4.7

Procedure: The same procedure as Test F1 was used on the Labeled Malware Set (Test Set C).

Results:

Figure 13: F5 Results

Results analysis: The test set for F5 was selected from the malware repository at Sandia, and was

comprised of malware known from the Mannheim Malware set. In this case, malware was identified via

behavioral analysis. There is no known large consensus from malware researchers or anti-virus providers

regarding this test set as it was largely generated for academic research only.

That said, this set is valuable as it contains samples representative from what is found “in the wild” and

has a truth table based on behavioral analysis. CodeDNA was largely in agreement with the truth table

results, showing very positive scores.

After examining several of the samples where CodeDNA disagreed with the truth table, it was difficult to

assess CodeDNA’s accuracy. In test sets F1 to F3 there is a large amount of information known about the

samples. In contrast, test set F4 contained a large amount of information that was believed to be true,

but was shown to require greater scrutiny. In the case of F5, there was little consensus among the anti-

virus vendors regarding classification of many of the samples. As such, a subset of the malware tested in

F5 was selected based on cases where there was stronger sentiment, through consensus by anti-virus

providers, largely provided by VirusTotal (see www.virustotal.com), and the belief of a larger degree of

variance and confidence in the known functionality. This was the basis for the following test in section

4.8.

0.000000

0.200000

0.400000

0.600000

0.800000

1.000000

1 20 30 40 50 60 70 80 90

Precision

Recall

 23

 Test F5 Subset – Measure precision, recall, purity and population margin for a subset 4.8

of Test Set C.

Procedure:

The same procedure as Test F1 was used on a specially selected subset of binaries taken from the

Labeled Malware Test Set (Test Set C).

Results:

Figure 14: F5 Subset Results

Results analysis: In this case CodeDNA performed well. The test set F5 subset was an effort to improve

testing, such that it was not reliant on small binaries, known to have several issues described earlier. As

the subset was smaller, we were able to create a truth table with a higher degree of confidence over the

larger F5 test set.

In this case CodeDNA maintained a high level of precision with a high and stable level of recall.

0.000000

0.200000

0.400000

0.600000

0.800000

1.000000

1 20 30 40 50 60 70 80 90

Precision

Recall

 24

 Test F6 - Measure precision, recall, purity and population margin for test set D. 4.9
Procedure: The same procedure as Test F1 was used on the Labeled Mixed Set (Test Set D).

Results:

Figure 15: F6 Results

Results analysis: In this case, the addition of Windows XP binaries produced deceiving results. The scores

for CodeDNA are high, but have a deceiving drop off point. The results are questionable given that

grouping all Windows XP binaries together in a single group caused the truth table to be overly broad,

and as such the performance for CodeDNA is likely better than what was shown. It is very likely that

CodeDNA identified sub-relationships between the Windows XP binaries which are not reflected in the

truth table. Nevertheless, CodeDNA’s scores were still high and are in agreement with the results from

the larger F5 test set.

0.000000

0.200000

0.400000

0.600000

0.800000

1.000000

1 20 30 40 50 60 70 80 90

Precision

Recall

 25

 Usability and Testing Notes 4.10
During 6 months of testing, the test team noted no stability issues in using CodeDNA. Not once did

CodeDNA fail to run, nor did the machine hosting CodeDNA crash as a result of CodeDNA. This speaks to

the maturity of the software, and to support the statement that CodeDNA is ready for pilot test

deployment.

In testing, two main usability inconveniences were noted. First, when running large test sets, CodeDNA

does not adequately notify the tester of completion. The stated practice of watching for the screen to

return in the menu for CodeDNA did not always work, and instead the tester had to watch for the

results file to stop growing in size. This can be disconcerting in that the tester has no way of knowing if

CodeDNA has crashed, or if CodeDNA has completed running.

Second, in testing the Viz Tool, the main frustration came from having the search function for finding

specific malware on a separate screen from the main visualization screen. There were ways shown to

more adequately arrange and sort the samples, but this was also mildly counter-intuitive. The CodeDNA

team has shared methods for showing information in the Viz Tool that would make searching much

easier, as well as ways to manipulate the screen to highlight how to better display desired information

and relationships between samples.

It was also shown in the following figures, that while the Viz Tool can be very helpful in displaying

families, it is possible to overrun the screen depending on the number of samples used. Figure 16 shows

a useful mixing of and the interplay between families of malware. Figure 17 shows the screen being

overrun as the number of samples increases. Visualization of large amounts of data is a fundamentally

challenging problem, and the development team anticipates that any production analysis system will

have sophisticated data analysis tools.

Figure 18 helps to show that CodeDNA can be incredibly useful in identifying closely related samples

based on a provided threshold. With these families identified an analyst’s workload can be decreased to

allow better focus on the truly unique or important samples. In this way, analysis after an attack can be

triaged in a more meaningful manner.

 26

Figure 16: CodeDNA Viz Tool Clusters

Figure 17: CodeDNA Viz Tool Screen Overrun

 27

Figure 18: CodeDNA Triage Helpful Groupings

Many of the recommendations given to the CodeDNA team have already been implemented in

subsequent versions, or have improvements in the works. Additional usability notes will be compiled

and submitted to the technology provider in regards to improving the documentation, but it should also

be stated that while CodeDNA is relatively new, the quality of the documentation provided, the stability

of the software, and the level of features clearly demonstrate the level of maturity which CodeDNA has

attained, that it is ready for pilot implementation

Technology provider’s note: the funding under which CodeDNA was developed was for the core

technology only, and did not support the kind of detailed attention that the graphical interface sorely

needs. It was always anticipated that the core technology would be embedded into an existing malware

processing system that already had its own job management capability and data display capability.

Nevertheless, the usability deficiencies pointed out by the testers are real, and were valuable to a team

whose focus led to acceptance over time of quirks in the interface and the documentation. There are

significant improvements in documentation currently underway. CodeDNA has also now been modified

to work as a web service; other API improvements are on the drawing board. There is a lot of

interesting work in automating analysis flows and visualizing results that could be done here.

 28

 Conclusion, Recommendation and Future Work 4.11
Testing began with the goal of answering the following question. Does CodeDNA provide a “reliable,

fully automated, fast means for identifying related malware files and linking variants.” The use cases

initially provided were for separating malware from benignware in incident response, and in grouping

similar files. Additionally, it was thought that CodeDNA could help to identify families of malware.

CodeDNA was tested using 7 functional tests from 4 distinct test sets. In these tests, CodeDNA reported

variants with a high level of precision and recall, while additionally allowing for tuning depending on the

situation and the desired return. In cases where the results were not as expected CodeDNA largely

highlighted errors in the believed ground truth or in the creation of test samples, while the results

pointed to interesting new potential for malware attribution, and directions for further exploration of

this aspect. The strongest results came from tests on malware gathered in the wild.

During 6 months of testing, CodeDNA never once crashed a machine, and completed all but the largest

test cases in a matter of minutes. CodeDNA also proved to be excellent in grouping related samples, and

as a part of an analyst’s toolkit is anticipated to help to reduce the amount of duplicated effort by

eliminating the need to conduct detailed analysis of similar samples. Further, CodeDNA can aid in

prioritizing workload as well as quickly highlighting believed relationships between samples seen

previously as well as newly-arrived malware.

As is expected with any new technology, CodeDNA exhibited some deficiencies in the user interface and

documentation, and some improvements were found which will hopefully make CodeDNA a more

complete tool. However, given CodeDNA’s stability and performance, the test team believes that

CodeDNA is ready for deployment in a pilot test implementation.

 References 5.

[1] BinDiff, http://www.zynamics.com/bindiff.html

[2] bsdiff, http://www.daemonology.net/bsdiff/

[3] Precision and recall, Wikipedia, http://en.wikipedia.org/wiki/Precision_and_recall

[4] Meila, M., Comparing Clusterings by the Variation of Information,

http://www.stat.washington.edu/mmp/Papers/jasa-compare.ps

[5] SSdeep, http://SSdeep.sourceforge.net/

[6] Van Randwyk, J.; Ken Chiang; Lloyd, L.; Vanderveen, K., "Farm: An automated malware analysis

environment," Security Technology, 2008. ICCST 2008. 42nd Annual IEEE International Carnahan

Conference on , vol., no., pp.321,325, 13-16 Oct. 2008

http://www.zynamics.com/bindiff.html
http://www.daemonology.net/bsdiff/
http://ssdeep.sourceforge.net/

 29

 Appendix 6.

 Results Spreadsheet 6.1

Results File Truth File Precision Recall Purity Pop. Margin Thresh.

'F1_1.csv' 'F1_ground_truth.csv' 0.157895 1.000000 0.200000 0.000000 1

'F1_20.csv' 'F1_ground_truth.csv' 0.238095 1.000000 0.625000 0.500000 20

'F1_30.csv' 'F1_ground_truth.csv' 0.384615 1.000000 0.777778 0.666667 30

'F1_40.csv' 'F1_ground_truth.csv' 0.384615 1.000000 0.777778 0.666667 40

'F1_50.csv' 'F1_ground_truth.csv' 0.483871 1.000000 0.777778 0.666667 50

'F1_60.csv' 'F1_ground_truth.csv' 0.684211 0.866667 0.850000 0.750000 60

'F1_70.csv' 'F1_ground_truth.csv' 1.000000 0.833333 1.000000 1.000000 70

'F1_80.csv' 'F1_ground_truth.csv' 1.000000 0.700000 1.000000 1.000000 80

'F1_90.csv' 'F1_ground_truth.csv' 1.000000 0.566667 1.000000 1.000000 90

'F2_1.csv' 'F2_ground_truth.csv' 0.225446 0.759398 0.614286 0.500000 1

'F2_20.csv' 'F2_ground_truth.csv' 0.277108 0.518797 0.675439 0.539474 20

'F2_30.csv' 'F2_ground_truth.csv' 0.365079 0.518797 0.760000 0.640000 30

'F2_40.csv' 'F2_ground_truth.csv' 0.365079 0.518797 0.760000 0.640000 40

'F2_50.csv' 'F2_ground_truth.csv' 0.552000 0.518797 0.827778 0.700000 50

'F2_60.csv' 'F2_ground_truth.csv' 0.640449 0.428571 0.837662 0.714286 60

'F2_70.csv' 'F2_ground_truth.csv' 0.777778 0.421053 0.944444 0.888889 70

'F2_80.csv' 'F2_ground_truth.csv' 0.764706 0.390977 0.954545 0.909091 80

'F2_90.csv' 'F2_ground_truth.csv' 1.000000 0.345865 1.000000 1.000000 90

'F3_1.csv' 'F3_ground_truth.csv' 0.250188 0.764097 0.631579 0.526316 1

'F3_20.csv' 'F3_ground_truth.csv' 0.318182 0.579977 0.691392 0.554945 20

'F3_30.csv' 'F3_ground_truth.csv' 0.405145 0.579977 0.771041 0.650679 30

'F3_40.csv' 'F3_ground_truth.csv' 0.405145 0.579977 0.771041 0.650679 40

'F3_50.csv' 'F3_ground_truth.csv' 0.570136 0.579977 0.837691 0.714597 50

'F3_60.csv' 'F3_ground_truth.csv' 0.653313 0.487917 0.848596 0.741148 60

'F3_70.csv' 'F3_ground_truth.csv' 0.807322 0.482163 0.950617 0.901235 70

'F3_80.csv' 'F3_ground_truth.csv' 0.799599 0.459148 0.959596 0.919192 80

'F3_90.csv' 'F3_ground_truth.csv' 1.000000 0.413119 1.000000 1.000000 90

'F4_1.csv' 'F4_ground_truth.csv' 0.117389 0.548975 0.961648 0.954545 1

'F4_20.csv' 'F4_ground_truth.csv' 0.101190 0.464692 0.972782 0.967742 20

'F4_30.csv' 'F4_ground_truth.csv' 0.101190 0.464692 0.972782 0.967742 30

'F4_40.csv' 'F4_ground_truth.csv' 0.105946 0.446469 0.972782 0.967742 40

'F4_50.csv' 'F4_ground_truth.csv' 0.109114 0.387244 0.972782 0.967742 50

'F4_60.csv' 'F4_ground_truth.csv' 0.126214 0.355353 0.942739 0.918300 60

'F4_70.csv' 'F4_ground_truth.csv' 0.154895 0.284738 0.942739 0.918300 70

 30

'F4_80.csv' 'F4_ground_truth.csv' 0.185771 0.214123 0.906544 0.840372 80

'F4_90.csv' 'F4_ground_truth.csv' 0.374101 0.118451 0.936144 0.893121 90

'F5_sub_1.csv' 'F5_sub_ground_truth.csv' 0.200704 1.140000 0.604167 0.500000 1

'F5_sub_20.csv' 'F5_sub_ground_truth.csv' 0.552632 0.840000 0.902778 0.833333 20

'F5_sub_30.csv' 'F5_sub_ground_truth.csv' 0.891304 0.820000 0.979167 0.958333 30

'F5_sub_40.csv' 'F5_sub_ground_truth.csv' 1.000000 0.820000 1.000000 1.000000 40

'F5_sub_50.csv' 'F5_sub_ground_truth.csv' 1.000000 0.820000 1.000000 1.000000 50

'F5_sub_60.csv' 'F5_sub_ground_truth.csv' 1.000000 0.820000 1.000000 1.000000 60

'F5_sub_70.csv' 'F5_sub_ground_truth.csv' 1.000000 0.820000 1.000000 1.000000 70

'F5_sub_80.csv' 'F5_sub_ground_truth.csv' 1.000000 0.820000 1.000000 1.000000 80

'F5_sub_90.csv' 'F5_sub_ground_truth.csv' 1.000000 0.780000 1.000000 1.000000 90

'F5_1.csv' 'F5_ground_truth.csv' 0.188347 0.488992 0.997782 0.997168 1

'F5_20.csv' 'F5_ground_truth.csv' 0.537820 0.481909 0.998029 0.997390 20

'F5_30.csv' 'F5_ground_truth.csv' 0.714576 0.480848 0.998161 0.997515 30

'F5_40.csv' 'F5_ground_truth.csv' 0.722272 0.480430 0.997954 0.996375 40

'F5_50.csv' 'F5_ground_truth.csv' 0.745770 0.479515 0.997130 0.994260 50

'F5_60.csv' 'F5_ground_truth.csv' 0.749120 0.478283 0.997608 0.995217 60

'F5_70.csv' 'F5_ground_truth.csv' 0.749619 0.478001 0.997710 0.995419 70

'F5_80.csv' 'F5_ground_truth.csv' 0.750377 0.477256 0.997993 0.995986 80

'F5_90.csv' 'F5_ground_truth.csv' 0.877329 0.462266 0.998787 0.997573 90

'F6_1.csv' 'F6_ground_truth.csv' 0.171280 0.203438 0.999263 0.999094 1

'F6_20.csv' 'F6_ground_truth.csv' 0.388323 0.063320 0.991601 0.991498 20

'F6_30.csv' 'F6_ground_truth.csv' 0.500244 0.060980 0.994851 0.994743 30

'F6_40.csv' 'F6_ground_truth.csv' 0.508791 0.060677 0.995573 0.995041 40

'F6_50.csv' 'F6_ground_truth.csv' 0.522335 0.060332 0.995997 0.994867 50

'F6_60.csv' 'F6_ground_truth.csv' 0.523850 0.060062 0.995572 0.994409 60

'F6_70.csv' 'F6_ground_truth.csv' 0.524050 0.059975 0.994726 0.993576 70

'F6_80.csv' 'F6_ground_truth.csv' 0.524430 0.059851 0.994453 0.993133 80

'F6_90.csv' 'F6_ground_truth.csv' 0.602087 0.057115 0.994641 0.993516 90

